G2Cdb::Allele report

Mutation type
MI

Altered genes (1)

Gene Symbol Species Description
G00002430 MYH6 Homo sapiens myosin, heavy chain 6, cardiac muscle, alpha

Diseases (1)

Disease Description Nervous effect
D00000235 Hypertrophic cardiomyopathy N

Literature (1)

Pubmed - human_disease

  • Prevalence of cardiac beta-myosin heavy chain gene mutations in patients with hypertrophic cardiomyopathy.

    Perrot A, Schmidt-Traub H, Hoffmann B, Prager M, Bit-Avragim N, Rudenko RI, Usupbaeva DA, Kabaeva Z, Imanov B, Mirrakhimov MM, Dietz R, Wycisk A, Tendera M, Gessner R and Osterziel KJ

    Kardiologie am Campus Buch und Virchow-Klinikum, Charité-Universitätsmedizin Berlin und Max-Delbrück-Centrum für Molekulare Medizin, Wiltbergstrasse 50, 13125 Berlin, Germany. perrot@fvk-berlin.de

    Hypertrophic cardiomyopathy (HCM) is a frequent, autosomal-dominant cardiac disease and manifests predominantly as left ventricular hypertrophy. Mutations in the cardiac beta-myosin heavy chain gene (MYH7) are responsible for the disease in about 30% of cases where mutations were identified. We clinically evaluated a large group of 147 consecutive HCM patients from three cardiology centers in Germany, Poland, and Kyrgyzstan according to the same protocol. The DNA of the patients was systematically analyzed in the whole coding region of the MYH7 gene using PCR, single-strand conformation polymorphism analysis, and automated sequencing. Eleven different missense mutations (including seven novel ones) in 11 unrelated patients were identified, showing a mutation frequency of 7.5% in the study population. We further examined the families of five patients (three of German, one of Polish, and one of Kyrgyz origin) with 32 individuals in total. We observed a clear, age-dependent penetrance with onset of disease symptoms in the fourth decade of life. Genotype-phenotype correlations were different for each mutation, whereas the majority was associated with an intermediate/malign phenotype. In conclusion, we report a systematic molecular screening of the complete MYH7 gene in a large group of consecutive HCM patients, leading to a genetic diagnosis in 38 individuals. Information about the genotype in an individual from one family could be very useful for the clinician, especially when dealing with healthy relatives in doubt of their risk about developing HCM. The increasing application of genetic screening and the increasing knowledge about genotype-phenotype correlations will hopefully lead to an improved clinical management of HCM patients.

    Journal of molecular medicine (Berlin, Germany) 2005;83;6;468-77

© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.