G2Cdb::Human Disease report

Disease id
D00000064
Name
Urothelial carcinoma
Nervous system disease
no

Genes (2)

Gene Name/Description Mutations Found Literature Mutations Type Genetic association?
G00002235 CTNNB1
catenin (cadherin-associated protein), beta 1, 88kDa
Y (11956582) No mutation found (N) N
G00000031 HRAS
v-Ha-ras Harvey rat sarcoma viral oncogene homolog
Y (15897885) Microinsertion (MI) Y

References

  • FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma.

    Jebar AH, Hurst CD, Tomlinson DC, Johnston C, Taylor CF and Knowles MA

    Cancer Research UK Clinical Centre, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK.

    Fibroblast growth factor receptor 3 (FGFR3) mutations are frequent in superficial urothelial cell carcinoma (UCC). Ras gene mutations are also found in UCC. As oncogenic activation of both FGFR3 and Ras is predicted to result in stimulation of the mitogen-activated protein kinase (MAPK) pathway, we hypothesized that these might be mutually exclusive events. HRAS mutation has been widely studied in UCC, but all three Ras gene family members have not been screened for mutation in the same sample series. We screened 98 bladder tumours and 31 bladder cell lines for mutations in FGFR3, HRAS, NRAS and KRAS2. FGFR3 mutations were present in 54 tumours (55%) and three cell lines (10%), and Ras gene mutations in 13 tumours (13%) and four cell lines (13%). These included mutations in all three Ras genes; ten in HRAS, four in KRAS2 and four in NRAS and these were not associated with either tumour grade or stage. In no cases were Ras and FGFR3 mutation found together. This mutual exclusion suggests that FGFR3 and Ras gene mutation may represent alternative means to confer the same phenotype on UCC cells. If these events have biological equivalence, Ras mutant invasive UCC may represent a novel subgroup.

    Oncogene 2005;24;33;5218-25

  • No evidence for involvement of beta-catenin and APC in urothelial carcinomas.

    Stoehr R, Krieg RC, Knuechel R, Hofstaedter F, Pilarsky C, Zaak D, Schmitt R and Hartmann A

    Institute of Pathology, University of Regensburg, 93042 Regensburg, Germany.

    The wnt pathway plays an important role in embryonal patterning and cell fate determination, involving stabilization of nuclear and cytoplasmic beta-catenin (CTNNB1) mediated by APC, axin, and other proteins. Uncomplexed beta-catenin binds to TCF/LEF transcription factors and activates the expression of growth regulatory target genes such as c-myc or cyclin D1. In colorectal and other cancers, constitutive wnt signaling results frequently from mutations in one or more pathway components, e.g. APC and beta-catenin, resulting in nuclear and/or cytoplasmic accumulation of beta-catenin. In the present study, the most frequent alterations in the CTNNB1 and APC genes were investigated in primary urothelial bladder tumors and cell lines. Snap-frozen bladder tumors (n=99) of different stages and grades and 4 cell lines (RT4, RT112, J82, UROtsa) were investigated for APC allelic deletions by loss of heterozygosity (LOH) analysis. The most frequent mutated regions of CTNNB1 (degradation box in the third exon) and APC (mutation cluster region) were directly sequenced. Beta-catenin expression was analyzed by immunofluorescence in the cell lines. LOH at the APC gene locus on chromosome 5q21 was found in 7 of 72 (10%) of the informative cases. No mutations were found in either CTNNB1 or APC. A previously described polymorphism at codon 1493 of the APC gene was detected in 8 tumors and 3 cell lines. All cell lines showed normal membranous beta-catenin staining without evidence for nuclear or cytoplasmic accumulation. Alteration of APC and beta-catenin, which are the most frequent wnt pathway alterations in many tumor types, are rare events in urothelial carcinomas. Other wnt pathway members, such as axin, may play an important role in urothelial carcinogenesis.

    International journal of oncology 2002;20;5;905-11

Literature (2)

Pubmed - human_disease

  • FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma.

    Jebar AH, Hurst CD, Tomlinson DC, Johnston C, Taylor CF and Knowles MA

    Cancer Research UK Clinical Centre, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK.

    Fibroblast growth factor receptor 3 (FGFR3) mutations are frequent in superficial urothelial cell carcinoma (UCC). Ras gene mutations are also found in UCC. As oncogenic activation of both FGFR3 and Ras is predicted to result in stimulation of the mitogen-activated protein kinase (MAPK) pathway, we hypothesized that these might be mutually exclusive events. HRAS mutation has been widely studied in UCC, but all three Ras gene family members have not been screened for mutation in the same sample series. We screened 98 bladder tumours and 31 bladder cell lines for mutations in FGFR3, HRAS, NRAS and KRAS2. FGFR3 mutations were present in 54 tumours (55%) and three cell lines (10%), and Ras gene mutations in 13 tumours (13%) and four cell lines (13%). These included mutations in all three Ras genes; ten in HRAS, four in KRAS2 and four in NRAS and these were not associated with either tumour grade or stage. In no cases were Ras and FGFR3 mutation found together. This mutual exclusion suggests that FGFR3 and Ras gene mutation may represent alternative means to confer the same phenotype on UCC cells. If these events have biological equivalence, Ras mutant invasive UCC may represent a novel subgroup.

    Oncogene 2005;24;33;5218-25

  • No evidence for involvement of beta-catenin and APC in urothelial carcinomas.

    Stoehr R, Krieg RC, Knuechel R, Hofstaedter F, Pilarsky C, Zaak D, Schmitt R and Hartmann A

    Institute of Pathology, University of Regensburg, 93042 Regensburg, Germany.

    The wnt pathway plays an important role in embryonal patterning and cell fate determination, involving stabilization of nuclear and cytoplasmic beta-catenin (CTNNB1) mediated by APC, axin, and other proteins. Uncomplexed beta-catenin binds to TCF/LEF transcription factors and activates the expression of growth regulatory target genes such as c-myc or cyclin D1. In colorectal and other cancers, constitutive wnt signaling results frequently from mutations in one or more pathway components, e.g. APC and beta-catenin, resulting in nuclear and/or cytoplasmic accumulation of beta-catenin. In the present study, the most frequent alterations in the CTNNB1 and APC genes were investigated in primary urothelial bladder tumors and cell lines. Snap-frozen bladder tumors (n=99) of different stages and grades and 4 cell lines (RT4, RT112, J82, UROtsa) were investigated for APC allelic deletions by loss of heterozygosity (LOH) analysis. The most frequent mutated regions of CTNNB1 (degradation box in the third exon) and APC (mutation cluster region) were directly sequenced. Beta-catenin expression was analyzed by immunofluorescence in the cell lines. LOH at the APC gene locus on chromosome 5q21 was found in 7 of 72 (10%) of the informative cases. No mutations were found in either CTNNB1 or APC. A previously described polymorphism at codon 1493 of the APC gene was detected in 8 tumors and 3 cell lines. All cell lines showed normal membranous beta-catenin staining without evidence for nuclear or cytoplasmic accumulation. Alteration of APC and beta-catenin, which are the most frequent wnt pathway alterations in many tumor types, are rare events in urothelial carcinomas. Other wnt pathway members, such as axin, may play an important role in urothelial carcinogenesis.

    International journal of oncology 2002;20;5;905-11

© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.