G2Cdb::Human Disease report

Disease id
D00000114
Name
Spitz nevi
Nervous system disease
no

Genes (1)

Gene Name/Description Mutations Found Literature Mutations Type Genetic association?
G00000031 HRAS
v-Ha-ras Harvey rat sarcoma viral oncogene homolog
Y (10980135) Microinsertion (MI) ?

References

  • Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features.

    Bastian BC, LeBoit PE and Pinkel D

    Departments of Dermatology and Pathology and UCSF Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143-0808, USA. bastian@cc.ucsf.edu

    Spitz nevus is a benign melanocytic neoplasm that can be difficult or impossible to histologically distinguish from melanoma. We have recently described copy number increases of chromosome 11p in a subset of Spitz nevi. To study the molecular and histological features of this group, we studied 102 Spitz nevi for 11p copy number increases using fluorescence in situ hybridization (FISH) on tissue arrays. Copy number increases of at least threefold were found in 12 cases (11.8%) and involved the HRAS gene on chromosome 11p. Sequence analysis of HRAS showed frequent oncogenic mutations in cases with copy number increase (8/12 or 67%), contrasting with rare HRAS mutations in cases with normal HRAS copy numbers (1/21 or 5%, P: < 0.0001). Tumors with 11p copy number increases were larger, predominantly intradermal, had marked desmoplasia, characteristic cytological features, and had an infiltrating growth pattern. Proliferation rates in the majority of these cases were low to absent. HRAS activation by either mutation or copy number increase alone could explain several of the histological features that overlap with those of melanoma. We speculate that HRAS activation in the absence of co-operating additional genetic alterations drives the partially transformed melanocytes of these Spitz nevi into senescence or a stable growth arrest. Although there is no data suggesting that Spitz nevi with HRAS activation are at risk for progression to melanoma, future studies are warranted to assess their biological behavior more accurately.

    The American journal of pathology 2000;157;3;967-72

Literature (1)

Pubmed - human_disease

  • Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features.

    Bastian BC, LeBoit PE and Pinkel D

    Departments of Dermatology and Pathology and UCSF Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143-0808, USA. bastian@cc.ucsf.edu

    Spitz nevus is a benign melanocytic neoplasm that can be difficult or impossible to histologically distinguish from melanoma. We have recently described copy number increases of chromosome 11p in a subset of Spitz nevi. To study the molecular and histological features of this group, we studied 102 Spitz nevi for 11p copy number increases using fluorescence in situ hybridization (FISH) on tissue arrays. Copy number increases of at least threefold were found in 12 cases (11.8%) and involved the HRAS gene on chromosome 11p. Sequence analysis of HRAS showed frequent oncogenic mutations in cases with copy number increase (8/12 or 67%), contrasting with rare HRAS mutations in cases with normal HRAS copy numbers (1/21 or 5%, P: < 0.0001). Tumors with 11p copy number increases were larger, predominantly intradermal, had marked desmoplasia, characteristic cytological features, and had an infiltrating growth pattern. Proliferation rates in the majority of these cases were low to absent. HRAS activation by either mutation or copy number increase alone could explain several of the histological features that overlap with those of melanoma. We speculate that HRAS activation in the absence of co-operating additional genetic alterations drives the partially transformed melanocytes of these Spitz nevi into senescence or a stable growth arrest. Although there is no data suggesting that Spitz nevi with HRAS activation are at risk for progression to melanoma, future studies are warranted to assess their biological behavior more accurately.

    The American journal of pathology 2000;157;3;967-72

© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.