G2Cdb::Allele report

Mutation type
SNP

Altered genes (1)

Gene Symbol Species Description
G00001453 PTPN11 Homo sapiens protein tyrosine phosphatase, non-receptor type 11

Diseases (1)

Disease Description Nervous effect
D00000235 Hypertrophic cardiomyopathy N

Literature (1)

Pubmed - other

  • Familial aggregation of genetically heterogeneous hypertrophic cardiomyopathy: a boy with LEOPARD syndrome due to PTPN11 mutation and his nonsyndromic father lacking PTPN11 mutations.

    Digilio MC, Pacileo G, Sarkozy A, Limongelli G, Conti E, Cerrato F, Marino B, Pizzuti A, Calabrò R and Dallapiccola B

    Medical Genetics, Bambino Gesù Hospital, Rome, Italy. digilio@opbg.net

    Background: Nonsyndromic hypertrophic cardiomyopathy (HCM) is a primary cardiac disease transmitted as an autosomal dominant trait. Multiple chromosomal loci have been found to be involved in the etiology of this defect. LEOPARD syndrome is a genetic condition characteristically associated with HCM. Additional features of the syndrome include multiple lentigines, facial anomalies, sensorineural deafness, and growth retardation. Mutations in PTPN11, a gene encoding the protein tyrosine phosphatase SHP-2 located at chromosome 12q24, have been identified in patients with LEOPARD syndrome.

    Cases: We report here on a patient with HCM presenting with classic clinical features of LEOPARD syndrome, whose father also has HCM, but lacks phenotypic anomalies of the syndrome. Molecular analysis searching for PTPN11 mutations was performed in this family. A missense mutation (836A-->G; Tyr279Cys) in exon 7 of PTPN11 gene was identified in the patient with LEOPARD syndrome, whereas no mutation in PTPN11 gene was detected in the father or in additional family members.

    Conclusions: Aggregation of syndromic and nonsyndromic HCM in the same family is an unusual pattern of recurrence. Although genetic heterogeneity of LEOPARD and nonsyndromic HCM is not disputed, the existence of peculiar interactions linking genes causing nonsyndromic HCM and HCM in LEOPARD syndrome can be hypothesized. Different genes can work together, and a more severe cardiac phenotype can be due to additive effects. The involvement of familial susceptibility to specific cardiac malformations based on the presence of common predisposing factors can also be considered. Further molecular studies may shed light on these observations.

    Birth defects research. Part A, Clinical and molecular teratology 2004;70;2;95-8

© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.