G2Cdb::Human Disease report

Disease id
D00000002
Name
Adenocarcinoma
Nervous system disease
no

Genes (2)

Gene Name/Description Mutations Found Literature Mutations Type Genetic association?
G00001624 PIK3CA
phosphoinositide-3-kinase, catalytic, alpha polypeptide
Y (16380997) Unknown (?) Y
G00002235 CTNNB1
catenin (cadherin-associated protein), beta 1, 88kDa
Y (11170292) Microinsertion (MI) Y

References

  • Mutation analysis of PIK3CA and PIK3CB in esophageal cancer and Barrett's esophagus.

    Phillips WA, Russell SE, Ciavarella ML, Choong DY, Montgomery KG, Smith K, Pearson RB, Thomas RJ and Campbell IG

    Surgical Oncology Laboratory, Peter MacCallum Cancer Centre, and Department of Surgery (St. Vincent's Hospital), University of Melbourne, Parkville, VIC, Australia. wayne.phillips@petermac.org

    Mutation of PIK3CA, the gene coding for the p110alpha catalytic subunit of phosphoinositide 3-kinase (PI3K), has been reported in a limited range of human tumors. We now report that PIK3CA is also mutated in esophageal tumors. Single-strand conformational polymorphism (SSCP) and denaturing high-performance liquid chromatography (DHPLC) were used to screen all 20 exons of PIK3CA in 101 samples from 95 individuals with esophageal cancer and/or Barrett's esophagus. Somatic mutation of PIK3CA was detected in 4 of 35 (11.8%) of esophageal squamous cell carcinomas (SCC) and 3 of 50 (6%) adenocarcinomas. No mutations were detected in any of 17 samples of Barrett's esophagus. For PIK3CB, we screened exons 11 and 22, which code for the regions corresponding to the exon 9 and 20 mutational 'hotspots' of PIK3CA. No somatic changes were detected in PIK3CB This study extends previous observations in other tumor types by demonstrating the presence of somatic PIK3CA mutations in both SCC and adenocarcinoma of the esophagus, thus implicating the PI3K pathway in the initiation and/or progression of esophageal cancers.

    International journal of cancer 2006;118;10;2644-6

  • Constitutive activation of the Wnt signaling pathway by CTNNB1 (beta-catenin) mutations in a subset of human lung adenocarcinoma.

    Sunaga N, Kohno T, Kolligs FT, Fearon ER, Saito R and Yokota J

    Biology Division, National Cancer Center Research Institute, Tokyo, Japan.

    Constitutive activation of the Wnt signaling pathway as a result of genetic alterations of APC, AXIN1, and CTNNB1 has been found in various human cancers, including those of the colon, liver, endometrium, ovary, prostate, and stomach. To investigate the pathogenetic significance of constitutive activation of the Wnt signaling pathway in human lung carcinogenesis, CTNNB1 alterations in exon 3, a region known to represent a mutation hot spot, were screened in 46 lung cancer cell lines and 47 primary lung cancers. Missense mutations causing substitutions of Ser/Thr residues critical for regulation by GSK-3beta were detected in one (2%) of the cell lines, A427, and two (4%) of the surgical specimens. The three lung cancers with CTNNB1 mutations were adenocarcinomas. To explore the prevalence of constitutive activation of the Wnt signaling pathway in human lung cancer, we assessed 15 lung cancer cell lines representing major histological subtypes of lung cancers for constitutive Tcf transcriptional activity (CTTA). CTTA was observed only in the A427 adenocarcinoma cell line, but not in the remaining 14 cell lines. The data indicate that constitutive activation of the Wnt signaling pathway caused by CTNNB1 mutation is involved in the development and/or progression of a subset of lung carcinoma, preferentially in adenocarcinoma.

    Genes, chromosomes & cancer 2001;30;3;316-21

Literature (2)

Pubmed - human_disease

  • Constitutive activation of the Wnt signaling pathway by CTNNB1 (beta-catenin) mutations in a subset of human lung adenocarcinoma.

    Sunaga N, Kohno T, Kolligs FT, Fearon ER, Saito R and Yokota J

    Biology Division, National Cancer Center Research Institute, Tokyo, Japan.

    Constitutive activation of the Wnt signaling pathway as a result of genetic alterations of APC, AXIN1, and CTNNB1 has been found in various human cancers, including those of the colon, liver, endometrium, ovary, prostate, and stomach. To investigate the pathogenetic significance of constitutive activation of the Wnt signaling pathway in human lung carcinogenesis, CTNNB1 alterations in exon 3, a region known to represent a mutation hot spot, were screened in 46 lung cancer cell lines and 47 primary lung cancers. Missense mutations causing substitutions of Ser/Thr residues critical for regulation by GSK-3beta were detected in one (2%) of the cell lines, A427, and two (4%) of the surgical specimens. The three lung cancers with CTNNB1 mutations were adenocarcinomas. To explore the prevalence of constitutive activation of the Wnt signaling pathway in human lung cancer, we assessed 15 lung cancer cell lines representing major histological subtypes of lung cancers for constitutive Tcf transcriptional activity (CTTA). CTTA was observed only in the A427 adenocarcinoma cell line, but not in the remaining 14 cell lines. The data indicate that constitutive activation of the Wnt signaling pathway caused by CTNNB1 mutation is involved in the development and/or progression of a subset of lung carcinoma, preferentially in adenocarcinoma.

    Genes, chromosomes & cancer 2001;30;3;316-21

Pubmed - other

  • Mutation analysis of PIK3CA and PIK3CB in esophageal cancer and Barrett's esophagus.

    Phillips WA, Russell SE, Ciavarella ML, Choong DY, Montgomery KG, Smith K, Pearson RB, Thomas RJ and Campbell IG

    Surgical Oncology Laboratory, Peter MacCallum Cancer Centre, and Department of Surgery (St. Vincent's Hospital), University of Melbourne, Parkville, VIC, Australia. wayne.phillips@petermac.org

    Mutation of PIK3CA, the gene coding for the p110alpha catalytic subunit of phosphoinositide 3-kinase (PI3K), has been reported in a limited range of human tumors. We now report that PIK3CA is also mutated in esophageal tumors. Single-strand conformational polymorphism (SSCP) and denaturing high-performance liquid chromatography (DHPLC) were used to screen all 20 exons of PIK3CA in 101 samples from 95 individuals with esophageal cancer and/or Barrett's esophagus. Somatic mutation of PIK3CA was detected in 4 of 35 (11.8%) of esophageal squamous cell carcinomas (SCC) and 3 of 50 (6%) adenocarcinomas. No mutations were detected in any of 17 samples of Barrett's esophagus. For PIK3CB, we screened exons 11 and 22, which code for the regions corresponding to the exon 9 and 20 mutational 'hotspots' of PIK3CA. No somatic changes were detected in PIK3CB This study extends previous observations in other tumor types by demonstrating the presence of somatic PIK3CA mutations in both SCC and adenocarcinoma of the esophagus, thus implicating the PI3K pathway in the initiation and/or progression of esophageal cancers.

    International journal of cancer 2006;118;10;2644-6

© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.