G2Cdb::Human Disease report

Disease id
D00000045
Name
Endometrial carcinoma
Nervous system disease
no

Genes (3)

Gene Name/Description Mutations Found Literature Mutations Type Genetic association?
G00001624 PIK3CA
phosphoinositide-3-kinase, catalytic, alpha polypeptide
Y (16322209) Microinsertion (MI) Y
G00001624 PIK3CA
phosphoinositide-3-kinase, catalytic, alpha polypeptide
Y (16949921) Unknown (?) Y
G00002235 CTNNB1
catenin (cadherin-associated protein), beta 1, 88kDa
Y (10416591) Single nucleotide polymorphism (SNP) Y
G00002235 CTNNB1
catenin (cadherin-associated protein), beta 1, 88kDa
Y (10416591) Deletion (D) Y
G00002235 CTNNB1
catenin (cadherin-associated protein), beta 1, 88kDa
Y (11957146) Repeat polymorphism (RP) Y
G00002137 SRC
v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian)
Y (10804287) Single nucleotide polymorphism (SNP) Y

References

  • PIK3CA gene mutations in endometrial carcinoma: correlation with PTEN and K-RAS alterations.

    Velasco A, Bussaglia E, Pallares J, Dolcet X, Llobet D, Encinas M, Llecha N, Palacios J, Prat J and Matias-Guiu X

    Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, Lleida, Spain.

    Alterations in the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway are common in endometrial carcinoma. Inactivation of the tumor suppressor gene PTEN leads to a constitutively active PI3K pathway, which plays a role in the early steps of endometrial tumorigenesis. Other alterations in the PI3K/AKT pathway are mutations in the PIK3CA gene, which encode the p110alpha catalytic subunit of PI3K. PIK3CA mutations cluster to the helical (exon 9) and the kinase (exon 20) domains of the gene. In endometrial carcinomas, PIK3CA mutations have been found to coexist frequently with PTEN mutations, but it is not clear whether they occur in cells with monoallelic or biallelic inactivation of PTEN. In the present study we have evaluated PIK3CA mutational status in a series of 33 endometrial carcinomas, previously screened for microsatellite instability and mutations in PTEN, K-RAS, and CTNNB-1. The tumors were also evaluated for loss of heterozygosity on 10q23 and hypermethylation of the promoter region of PTEN/psiPTEN to assess the monoallelic or biallelic inactivation status of PTEN. PIK3CA mutations were detected in 8 (24%) of the 33 cases. Seven mutations were located in exon 20 and 1 in exon 9. PTEN alterations were found in 19 cases (57%). Biallelic inactivation of PTEN was demonstrated in 11 tumors, whereas 8 tumors exhibited alteration in only 1 of the 2 alleles. PIK3CA mutations coexisted with monoallelic alterations of PTEN in 4 cases (2 mutations and 2 allelic imbalances), with biallelic PTEN inactivation in 1 case (mutation and promoter methylation), and 3 tumors showed PIK3CA mutations in association with wild-type PTEN. PIK3CA mutations did not correlate with microsatellite instability or mutations in CTNNB-1. However, PIK3CA and K-RAS mutations (8 cases) were mutually exclusive alterations. In summary, the results confirm that PIK3CA mutations are frequent in endometrial carcinoma and support the hypothesis that PIK3CA mutations may have an additive effect to PTEN monoallelic inactivation in endometrial carcinoma.

    Human pathology 2006;37;11;1465-72

  • High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma.

    Oda K, Stokoe D, Taketani Y and McCormick F

    Cancer Research Institute, University of California San Francisco, San Francisco, California 94115, USA.

    The phosphatidylinositol 3'-kinase (PI3K) pathway is activated in many human cancers. In addition to inactivation of the PTEN tumor suppressor gene, mutations or amplifications of the catalytic subunit alpha of PI3K (PIK3CA) have been reported. However, the coexistence of mutations in these two genes seems exceedingly rare. As PTEN mutations occur at high frequency in endometrial carcinoma, we screened 66 primary endometrial carcinomas for mutations in the helical and catalytic domains of PIK3CA. We identified a total of 24 (36%) mutations in this gene and coexistence of PIK3CA/PTEN mutations at high frequency (26%). PIK3CA mutations were more common in tumors with PTEN mutations (17 of 37, 46%) compared with those without PTEN mutations (7 of 29, 24%). Array comparative genomic hybridization detected 3q24-qter amplification, which covers the PIK3CA gene (3q26.3), in one of nine tumors. Knocking down PTEN expression in the HEC-1B cell line, which possesses both K-Ras and PIK3CA mutations, further enhances phosphorylation of Akt (Ser473), indicating that double mutation of PIK3CA and PTEN has an additive effect on PI3K activation. Our data suggest that the PI3K pathway is extensively activated in endometrial carcinomas, and that combination of PIK3CA/PTEN alterations might play an important role in development of these tumors.

    Cancer research 2005;65;23;10669-73

  • CTNNB1 mutations and beta-catenin expression in endometrial carcinomas.

    Machin P, Catasus L, Pons C, Muñoz J, Matias-Guiu X and Prat J

    Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.

    Mutations in the beta-catenin gene (CTNNB 1) with abnormal nuclear accumulation of beta-catenin have recently been identified in endometrial carcinoma (EC). Their relationship with microsatellite instability (MI) is unclear. It has been suggested that matrix metalloproteinase-7 (MMP-7) and cyclin D1 (cD) genes are targets for beta-catenin activation. DNA from 73 patients with EC was obtained from tumor and normal tissue (59 endometrioid and 14 nonendometrioid). CTNNB 1 mutations in exon 3 were assessed by single-strand conformation polymorphism and DNA sequencing. The results were correlated with immunostaining for beta-catenin, MMP-7, and cD. Three (CA)n repeats and mononucleotide tracts BAT 25 and BAT 26 had been previously used for MI analysis. CTNNB1 mutations were identified in 15 ECs (20.5%), all of them endometrioid carcinomas (15 of 59; 25.4%). They occurred in 6 of 19 MI-positive ECs (31.5%) and in 9 of 54 MI-negative ECs (16.6%). Eleven of the 15 CTNNB 1-mutated ECs showed beta-catenin nuclear immunostaining (P <.05). MMP-7 expression (>50% cells) was observed in 23 ECs, with 7 of these showing CTNNB 1 mutations. Significant expression of cD (>50% cells) was detected in 8 ECs, with 5 of these exhibiting CTNNB 1 mutations (P <.05). The results confirm that beta-catenin plays a role in endometrial carcinogenesis, particularly in endometrioid carcinomas. The results also suggest that MMP-7 and particularly cD may be targets of beta-catenin activation in ECs.

    Human pathology 2002;33;2;206-12

  • Mutation of the SRC gene in endometrial carcinoma.

    Sugimura M, Kobayashi K, Sagae S, Nishioka Y, Ishioka S, Terasawa K, Tokino T and Kudo R

    Department of Obstetrics and Gynecology, Cancer Research Institute, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-0061, Japan.

    Recently, an activating mutation of the SRC gene has been implicated in about one-tenth of advanced colon cancers. The SRC 531 mutation results in truncation of SRC directly C-terminal to the regulatory Tyr 530 and appears to activate the Tyr 530. To investigate whether mutation of SRC plays an important role in the development and progression of gynecological tumors, we performed mutational analysis of the entire coding region of SRC in 70 ovarian carcinomas, 68 endometrial carcinomas and 3 endometrial stromal sarcomas by means of polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) followed by nucleotide sequencing and restriction fragment length polymorphism (RFLP) analysis. We found one truncated mutation at codon 531 (Gln to Stop) in an endometrial carcinoma. However, we found no mutation of this gene in ovarian carcinoma or endometrial stromal sarcoma. Our results suggest that mutation of SRC may be implicated in a small proportion of endometrial carcinomas.

    Japanese journal of cancer research : Gann 2000;91;4;395-8

  • Beta-catenin mutations are specific for colorectal carcinomas with microsatellite instability but occur in endometrial carcinomas irrespective of mutator pathway.

    Mirabelli-Primdahl L, Gryfe R, Kim H, Millar A, Luceri C, Dale D, Holowaty E, Bapat B, Gallinger S and Redston M

    Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.

    Some colorectal tumors with wild-type adenomatous polyposis coli gene have activating mutations in beta-catenin (encoded by CTNNB1) that result in decreased phosphorylation by GSK-3beta and increased signaling through the Tcf/Lef transcription factors. To investigate the relationship between CTNNB1 mutations and underlying pathways of genomic instability, we examined 80 colorectal cancers stratified by the presence or absence of microsatellite instability (MSI). CTNNB1 mutations were identified in 13 (25%) of 53 cancers with high frequency MSI (MSI-H), including 12 point mutations at exon 3 phosphorylation sites (codons 41 and 45) and one deletion of the entire exon 3 degradation box. No CTNNB1 mutations were identified in 27 microsatellite stable or low frequency MSI (MSI-L) colorectal cancers (P < 0.01). In contrast, CTNNB1 mutations were identified in 3 of 9 (33%) MSI-H and 10 of 20 (50%) MSS/MSI-L endometrial carcinomas, suggesting a more generalized involvement in these tumors. Only six (46%) of the endometrial carcinoma CTNNB1 mutations occurred at residues directly phosphorylated by GSK-3beta, and only one of these was at either codon 41 or 45. All point mutations in MSI-H cancers were transitions, whereas 64% of those in MSS/MSI-L cancers were transversions (P < 0.01). The differences in the mutation profiles suggest that there may be molecular fingerprints of CTNNB1 mutations, determined by biological factors related to both tumor type and underlying pathways of genomic instability.

    Cancer research 1999;59;14;3346-51

Literature (5)

Pubmed - human_disease

  • Mutation of the SRC gene in endometrial carcinoma.

    Sugimura M, Kobayashi K, Sagae S, Nishioka Y, Ishioka S, Terasawa K, Tokino T and Kudo R

    Department of Obstetrics and Gynecology, Cancer Research Institute, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-0061, Japan.

    Recently, an activating mutation of the SRC gene has been implicated in about one-tenth of advanced colon cancers. The SRC 531 mutation results in truncation of SRC directly C-terminal to the regulatory Tyr 530 and appears to activate the Tyr 530. To investigate whether mutation of SRC plays an important role in the development and progression of gynecological tumors, we performed mutational analysis of the entire coding region of SRC in 70 ovarian carcinomas, 68 endometrial carcinomas and 3 endometrial stromal sarcomas by means of polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) followed by nucleotide sequencing and restriction fragment length polymorphism (RFLP) analysis. We found one truncated mutation at codon 531 (Gln to Stop) in an endometrial carcinoma. However, we found no mutation of this gene in ovarian carcinoma or endometrial stromal sarcoma. Our results suggest that mutation of SRC may be implicated in a small proportion of endometrial carcinomas.

    Japanese journal of cancer research : Gann 2000;91;4;395-8

  • Beta-catenin mutations are specific for colorectal carcinomas with microsatellite instability but occur in endometrial carcinomas irrespective of mutator pathway.

    Mirabelli-Primdahl L, Gryfe R, Kim H, Millar A, Luceri C, Dale D, Holowaty E, Bapat B, Gallinger S and Redston M

    Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.

    Some colorectal tumors with wild-type adenomatous polyposis coli gene have activating mutations in beta-catenin (encoded by CTNNB1) that result in decreased phosphorylation by GSK-3beta and increased signaling through the Tcf/Lef transcription factors. To investigate the relationship between CTNNB1 mutations and underlying pathways of genomic instability, we examined 80 colorectal cancers stratified by the presence or absence of microsatellite instability (MSI). CTNNB1 mutations were identified in 13 (25%) of 53 cancers with high frequency MSI (MSI-H), including 12 point mutations at exon 3 phosphorylation sites (codons 41 and 45) and one deletion of the entire exon 3 degradation box. No CTNNB1 mutations were identified in 27 microsatellite stable or low frequency MSI (MSI-L) colorectal cancers (P < 0.01). In contrast, CTNNB1 mutations were identified in 3 of 9 (33%) MSI-H and 10 of 20 (50%) MSS/MSI-L endometrial carcinomas, suggesting a more generalized involvement in these tumors. Only six (46%) of the endometrial carcinoma CTNNB1 mutations occurred at residues directly phosphorylated by GSK-3beta, and only one of these was at either codon 41 or 45. All point mutations in MSI-H cancers were transitions, whereas 64% of those in MSS/MSI-L cancers were transversions (P < 0.01). The differences in the mutation profiles suggest that there may be molecular fingerprints of CTNNB1 mutations, determined by biological factors related to both tumor type and underlying pathways of genomic instability.

    Cancer research 1999;59;14;3346-51

Pubmed - other

  • PIK3CA gene mutations in endometrial carcinoma: correlation with PTEN and K-RAS alterations.

    Velasco A, Bussaglia E, Pallares J, Dolcet X, Llobet D, Encinas M, Llecha N, Palacios J, Prat J and Matias-Guiu X

    Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, Lleida, Spain.

    Alterations in the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway are common in endometrial carcinoma. Inactivation of the tumor suppressor gene PTEN leads to a constitutively active PI3K pathway, which plays a role in the early steps of endometrial tumorigenesis. Other alterations in the PI3K/AKT pathway are mutations in the PIK3CA gene, which encode the p110alpha catalytic subunit of PI3K. PIK3CA mutations cluster to the helical (exon 9) and the kinase (exon 20) domains of the gene. In endometrial carcinomas, PIK3CA mutations have been found to coexist frequently with PTEN mutations, but it is not clear whether they occur in cells with monoallelic or biallelic inactivation of PTEN. In the present study we have evaluated PIK3CA mutational status in a series of 33 endometrial carcinomas, previously screened for microsatellite instability and mutations in PTEN, K-RAS, and CTNNB-1. The tumors were also evaluated for loss of heterozygosity on 10q23 and hypermethylation of the promoter region of PTEN/psiPTEN to assess the monoallelic or biallelic inactivation status of PTEN. PIK3CA mutations were detected in 8 (24%) of the 33 cases. Seven mutations were located in exon 20 and 1 in exon 9. PTEN alterations were found in 19 cases (57%). Biallelic inactivation of PTEN was demonstrated in 11 tumors, whereas 8 tumors exhibited alteration in only 1 of the 2 alleles. PIK3CA mutations coexisted with monoallelic alterations of PTEN in 4 cases (2 mutations and 2 allelic imbalances), with biallelic PTEN inactivation in 1 case (mutation and promoter methylation), and 3 tumors showed PIK3CA mutations in association with wild-type PTEN. PIK3CA mutations did not correlate with microsatellite instability or mutations in CTNNB-1. However, PIK3CA and K-RAS mutations (8 cases) were mutually exclusive alterations. In summary, the results confirm that PIK3CA mutations are frequent in endometrial carcinoma and support the hypothesis that PIK3CA mutations may have an additive effect to PTEN monoallelic inactivation in endometrial carcinoma.

    Human pathology 2006;37;11;1465-72

  • High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma.

    Oda K, Stokoe D, Taketani Y and McCormick F

    Cancer Research Institute, University of California San Francisco, San Francisco, California 94115, USA.

    The phosphatidylinositol 3'-kinase (PI3K) pathway is activated in many human cancers. In addition to inactivation of the PTEN tumor suppressor gene, mutations or amplifications of the catalytic subunit alpha of PI3K (PIK3CA) have been reported. However, the coexistence of mutations in these two genes seems exceedingly rare. As PTEN mutations occur at high frequency in endometrial carcinoma, we screened 66 primary endometrial carcinomas for mutations in the helical and catalytic domains of PIK3CA. We identified a total of 24 (36%) mutations in this gene and coexistence of PIK3CA/PTEN mutations at high frequency (26%). PIK3CA mutations were more common in tumors with PTEN mutations (17 of 37, 46%) compared with those without PTEN mutations (7 of 29, 24%). Array comparative genomic hybridization detected 3q24-qter amplification, which covers the PIK3CA gene (3q26.3), in one of nine tumors. Knocking down PTEN expression in the HEC-1B cell line, which possesses both K-Ras and PIK3CA mutations, further enhances phosphorylation of Akt (Ser473), indicating that double mutation of PIK3CA and PTEN has an additive effect on PI3K activation. Our data suggest that the PI3K pathway is extensively activated in endometrial carcinomas, and that combination of PIK3CA/PTEN alterations might play an important role in development of these tumors.

    Cancer research 2005;65;23;10669-73

  • CTNNB1 mutations and beta-catenin expression in endometrial carcinomas.

    Machin P, Catasus L, Pons C, Muñoz J, Matias-Guiu X and Prat J

    Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.

    Mutations in the beta-catenin gene (CTNNB 1) with abnormal nuclear accumulation of beta-catenin have recently been identified in endometrial carcinoma (EC). Their relationship with microsatellite instability (MI) is unclear. It has been suggested that matrix metalloproteinase-7 (MMP-7) and cyclin D1 (cD) genes are targets for beta-catenin activation. DNA from 73 patients with EC was obtained from tumor and normal tissue (59 endometrioid and 14 nonendometrioid). CTNNB 1 mutations in exon 3 were assessed by single-strand conformation polymorphism and DNA sequencing. The results were correlated with immunostaining for beta-catenin, MMP-7, and cD. Three (CA)n repeats and mononucleotide tracts BAT 25 and BAT 26 had been previously used for MI analysis. CTNNB1 mutations were identified in 15 ECs (20.5%), all of them endometrioid carcinomas (15 of 59; 25.4%). They occurred in 6 of 19 MI-positive ECs (31.5%) and in 9 of 54 MI-negative ECs (16.6%). Eleven of the 15 CTNNB 1-mutated ECs showed beta-catenin nuclear immunostaining (P <.05). MMP-7 expression (>50% cells) was observed in 23 ECs, with 7 of these showing CTNNB 1 mutations. Significant expression of cD (>50% cells) was detected in 8 ECs, with 5 of these exhibiting CTNNB 1 mutations (P <.05). The results confirm that beta-catenin plays a role in endometrial carcinogenesis, particularly in endometrioid carcinomas. The results also suggest that MMP-7 and particularly cD may be targets of beta-catenin activation in ECs.

    Human pathology 2002;33;2;206-12

© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.