G2Cdb::Human Disease report

Disease id
D00000233
Name
Pulmonary valve stenosis
Nervous system disease
no

Genes (1)

Gene Name/Description Mutations Found Literature Mutations Type Genetic association?
G00001453 PTPN11
protein tyrosine phosphatase, non-receptor type 11
Y (11992261) Microinsertion (MI) Y
G00001453 PTPN11
protein tyrosine phosphatase, non-receptor type 11
Y (12325025) Microinsertion (MI) Y

References

  • PTPN11 mutations in Noonan syndrome type I: detection of recurrent mutations in exons 3 and 13.

    Maheshwari M, Belmont J, Fernbach S, Ho T, Molinari L, Yakub I, Yu F, Combes A, Towbin J, Craigen WJ and Gibbs R

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.

    We surveyed 16 subjects with the clinical diagnosis of Noonan Syndrome (NS1) from 12 families and their relevant family members for mutations in PTPN11/SHP2 using direct DNA sequencing. We found three different mutations among five families. Two unrelated subjects shared the same de novo missense substitution in exon 13 (S502T); an additional two unrelated families had a mutation in exon 3 (Y63C); and one subject had the amino acid substitution Y62D, also in exon 3. None of the three mutations were present in ethnically matched controls. In the mature protein model, the exon 3 mutants and the exon 13 mutant amino acids cluster at the interface between the N' SH2 domain and the phosphatase catalytic domain. Six of eight subjects with PTPN11/SHP2 mutations had pulmonary valve stenosis while no mutations were identified in those subjects (N = 4) with hypertrophic cardiomyopathy. An additional four subjects with possible Noonan syndrome were evaluated, but no mutations in PTPN11/SHP2 were identified. These results confirm that mutations in PTPN11/SHP2 underlie a common form of Noonan syndrome, and that the disease exhibits both allelic and locus heterogeneity. The observation of recurrent mutations supports the hypothesis that a special class of gain-of-function mutations in SHP2 give rise to Noonan syndrome.

    Funded by: NHGRI NIH HHS: 5U5HG002051; NHLBI NIH HHS: P01 HL67155; NICHD NIH HHS: HD39056

    Human mutation 2002;20;4;298-304

  • PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity.

    Tartaglia M, Kalidas K, Shaw A, Song X, Musat DL, van der Burgt I, Brunner HG, Bertola DR, Crosby A, Ion A, Kucherlapati RS, Jeffery S, Patton MA and Gelb BD

    Department of Pediatrics, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA.

    Noonan syndrome (NS) is a developmental disorder characterized by facial dysmorphia, short stature, cardiac defects, and skeletal malformations. We recently demonstrated that mutations in PTPN11, the gene encoding the non-receptor-type protein tyrosine phosphatase SHP-2 (src homology region 2-domain phosphatase-2), cause NS, accounting for approximately 50% of cases of this genetically heterogeneous disorder in a small cohort. All mutations were missense changes and clustered at the interacting portions of the amino-terminal src-homology 2 (N-SH2) and protein tyrosine phosphatase (PTP) domains. A gain of function was postulated as a mechanism for the disease. Here, we report the spectrum and distribution of PTPN11 mutations in a large, well-characterized cohort with NS. Mutations were found in 54 of 119 (45%) unrelated individuals with sporadic or familial NS. There was a significantly higher prevalence of mutations among familial cases than among sporadic ones. All defects were missense, and several were recurrent. The vast majority of mutations altered amino acid residues located in or around the interacting surfaces of the N-SH2 and PTP domains, but defects also affected residues in the C-SH2 domain, as well as in the peptide linking the N-SH2 and C-SH2 domains. Genotype-phenotype analysis revealed that pulmonic stenosis was more prevalent among the group of subjects with NS who had PTPN11 mutations than it was in the group without them (70.6% vs. 46.2%; P<.01), whereas hypertrophic cardiomyopathy was less prevalent among those with PTPN11 mutations (5.9% vs. 26.2%; P<.005). The prevalence of other congenital heart malformations, short stature, pectus deformity, cryptorchidism, and developmental delay did not differ between the two groups. A PTPN11 mutation was identified in a family inheriting Noonan-like/multiple giant-cell lesion syndrome, extending the phenotypic range of disease associated with this gene.

    Funded by: NICHD NIH HHS: 5K24 HD 001294, 5P30 HD 28822, K24 HD001294

    American journal of human genetics 2002;70;6;1555-63

Literature (2)

Pubmed - other

  • PTPN11 mutations in Noonan syndrome type I: detection of recurrent mutations in exons 3 and 13.

    Maheshwari M, Belmont J, Fernbach S, Ho T, Molinari L, Yakub I, Yu F, Combes A, Towbin J, Craigen WJ and Gibbs R

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.

    We surveyed 16 subjects with the clinical diagnosis of Noonan Syndrome (NS1) from 12 families and their relevant family members for mutations in PTPN11/SHP2 using direct DNA sequencing. We found three different mutations among five families. Two unrelated subjects shared the same de novo missense substitution in exon 13 (S502T); an additional two unrelated families had a mutation in exon 3 (Y63C); and one subject had the amino acid substitution Y62D, also in exon 3. None of the three mutations were present in ethnically matched controls. In the mature protein model, the exon 3 mutants and the exon 13 mutant amino acids cluster at the interface between the N' SH2 domain and the phosphatase catalytic domain. Six of eight subjects with PTPN11/SHP2 mutations had pulmonary valve stenosis while no mutations were identified in those subjects (N = 4) with hypertrophic cardiomyopathy. An additional four subjects with possible Noonan syndrome were evaluated, but no mutations in PTPN11/SHP2 were identified. These results confirm that mutations in PTPN11/SHP2 underlie a common form of Noonan syndrome, and that the disease exhibits both allelic and locus heterogeneity. The observation of recurrent mutations supports the hypothesis that a special class of gain-of-function mutations in SHP2 give rise to Noonan syndrome.

    Funded by: NHGRI NIH HHS: 5U5HG002051; NHLBI NIH HHS: P01 HL67155; NICHD NIH HHS: HD39056

    Human mutation 2002;20;4;298-304

  • PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity.

    Tartaglia M, Kalidas K, Shaw A, Song X, Musat DL, van der Burgt I, Brunner HG, Bertola DR, Crosby A, Ion A, Kucherlapati RS, Jeffery S, Patton MA and Gelb BD

    Department of Pediatrics, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA.

    Noonan syndrome (NS) is a developmental disorder characterized by facial dysmorphia, short stature, cardiac defects, and skeletal malformations. We recently demonstrated that mutations in PTPN11, the gene encoding the non-receptor-type protein tyrosine phosphatase SHP-2 (src homology region 2-domain phosphatase-2), cause NS, accounting for approximately 50% of cases of this genetically heterogeneous disorder in a small cohort. All mutations were missense changes and clustered at the interacting portions of the amino-terminal src-homology 2 (N-SH2) and protein tyrosine phosphatase (PTP) domains. A gain of function was postulated as a mechanism for the disease. Here, we report the spectrum and distribution of PTPN11 mutations in a large, well-characterized cohort with NS. Mutations were found in 54 of 119 (45%) unrelated individuals with sporadic or familial NS. There was a significantly higher prevalence of mutations among familial cases than among sporadic ones. All defects were missense, and several were recurrent. The vast majority of mutations altered amino acid residues located in or around the interacting surfaces of the N-SH2 and PTP domains, but defects also affected residues in the C-SH2 domain, as well as in the peptide linking the N-SH2 and C-SH2 domains. Genotype-phenotype analysis revealed that pulmonic stenosis was more prevalent among the group of subjects with NS who had PTPN11 mutations than it was in the group without them (70.6% vs. 46.2%; P<.01), whereas hypertrophic cardiomyopathy was less prevalent among those with PTPN11 mutations (5.9% vs. 26.2%; P<.005). The prevalence of other congenital heart malformations, short stature, pectus deformity, cryptorchidism, and developmental delay did not differ between the two groups. A PTPN11 mutation was identified in a family inheriting Noonan-like/multiple giant-cell lesion syndrome, extending the phenotypic range of disease associated with this gene.

    Funded by: NICHD NIH HHS: 5K24 HD 001294, 5P30 HD 28822, K24 HD001294

    American journal of human genetics 2002;70;6;1555-63

© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.