G2Cdb::Human Disease report

Disease id
D00000140
Name
Diabetes mellitus Type 1
Nervous system disease
no

Genes (3)

Gene Name/Description Mutations Found Literature Mutations Type Genetic association?
G00002531 SNAP25
synaptosomal-associated protein, 25kDa
Y (16519819) Single nucleotide polymorphism (SNP) N
G00002164 IRS1
insulin receptor substrate 1
Y (14988278) Single nucleotide polymorphism (SNP) N
G00002164 IRS1
insulin receptor substrate 1
Y (15059616) Single nucleotide polymorphism (SNP) Y
G00002164 IRS1
insulin receptor substrate 1
Y (16367885) Single nucleotide polymorphism (SNP) N
G00001324 ATP1A1
ATPase, Na+/K+ transporting, alpha 1 polypeptide
Y (15198370) Polymorphism (P) ?

References

  • Analysis of polymorphisms in 16 genes in type 1 diabetes that have been associated with other immune-mediated diseases.

    Smyth DJ, Howson JM, Payne F, Maier LM, Bailey R, Holland K, Lowe CE, Cooper JD, Hulme JS, Vella A, Dahlman I, Lam AC, Nutland S, Walker NM, Twells RC and Todd JA

    Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 2XY, UK. debbie.smyth@cimr.cam.ac.uk

    Background: The identification of the HLA class II, insulin (INS), CTLA-4 and PTPN22 genes as determinants of type 1 diabetes (T1D) susceptibility indicates that fine tuning of the immune system is centrally involved in disease development. Some genes have been shown to affect several immune-mediated diseases. Therefore, we tested the hypothesis that alleles of susceptibility genes previously associated with other immune-mediated diseases might perturb immune homeostasis, and hence also associate with predisposition to T1D.

    Methods: We resequenced and genotyped tag single nucleotide polymorphisms (SNPs) from two genes, CRP and FCER1B, and genotyped 27 disease-associated polymorphisms from thirteen gene regions, namely FCRL3, CFH, SLC9A3R1, PADI4, RUNX1, SPINK5, IL1RN, IL1RA, CARD15, IBD5-locus (including SLC22A4), LAG3, ADAM33 and NFKB1. These genes have been associated previously with susceptibility to a range of immune-mediated diseases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Graves' disease (GD), psoriasis, psoriatic arthritis (PA), atopy, asthma, Crohn disease and multiple sclerosis (MS). Our T1D collections are divided into three sample subsets, consisting of set 1 families (up to 754 families), set 2 families (up to 743 families), and a case-control collection (ranging from 1,500 to 4,400 cases and 1,500 to 4,600 controls). Each SNP was genotyped in one or more of these subsets. Our study typically had approximately 80% statistical power for a minor allele frequency (MAF) >5% and odds ratios (OR) of 1.5 with the type 1 error rate, alpha = 0.05.

    Results: We found no evidence of association with T1D at most of the loci studied 0.02 <P < 1.0. Only a SNP in ADAM33, rs2787094, was any evidence of association obtained, P = 0.0004 in set 1 families (relative risk (RR) = 0.78), but further support was not observed in the 4,326 cases and 4,610 controls, P = 0.57 (OR = 1.02).

    Conclusion: Polymorphisms in a variety of genes previously associated with immune-mediated disease susceptibility and/or having effects on gene function and the immune system, are unlikely to be affecting T1D susceptibility in a major way, even though some of the genes tested encode proteins of immune pathways that are believed to be central to the development of T1D. We cannot, however, rule out effect sizes smaller than OR 1.5.

    Funded by: Medical Research Council: G0000934; Wellcome Trust: 068545/Z/02

    BMC medical genetics 2006;7;20

  • IRS1, KCNJ11, PPARgamma2 and HNF-1alpha: do amino acid polymorphisms in these candidate genes support a shared aetiology between type 1 and type 2 diabetes?

    Johansen A, Jensen DP, Bergholdt R, Mortensen HB, Pociot F, Nerup J, Hansen T, Pedersen O and Danish Society of Childhood Diabetes

    Steno Diabetes Center and Hagedorn Research Institute, Gentofte, Copenhagen, Denmark. adjo@steno.dk

    Aims: Type 1 diabetes mellitus (T1DM) is a chronic disorder primarily triggered by environmental and immunological factors in genetically susceptible individuals. Despite the fact that there are indications of common aetiological features of T1DM and type 2 diabetes (T2DM), variation in genes involved in insulin secretion and insulin signalling has to a large extent been ignored as potential modifiers in the pathogenesis of T1DM. Recent studies suggest, however, that proven T2DM susceptibility gene variants may be involved in the pathogenesis of T1DM. The objective of this study was to estimate the impact of four selected amino acid polymorphisms -IRS-1 Gly972Arg, Kir6.2 Glu23Lys, HNF-1alpha Ala98Val and PPARgamma2 Pro12Ala in a Danish population of T1DM families.

    Methods: All variants were genotyped in 490 simplex- and multiplex-T1DM families applying polymerase chain reaction-restriction fragment length polymorphism, and results were evaluated by means of a transmission disequilibrium test (TDT) analysis.

    Results: TDT analysis revealed that the Arg972 IRS-1, the Lys23 Kir6.2 and the Val98 HNF-1alpha variants were transmitted from heterozygous parents to affected probands at frequencies of 49.1%, 47.0% and 54.1%, respectively (p > 0.05 for all). This was similar to the rate of transmission to unaffected siblings. The transmission rate of the Ala12 PPARgamma2 variant to affected probands was 46.5% (p > 0.05) which differed significantly from the transmission to unaffected offspring (p = 0.024). A combined analysis of the present and published pertinent data of 1691 transmissions showed a significantly decreased transmission of the PPARgamma2 Ala12 allele to affected probands (p = 0.0045).

    Conclusions: The Pro12Ala variant of PPARgamma2 is associated with T1DM, the minor Ala allele conferring a reduced risk. This same finding has been reported in patients with T2DM.

    Diabetes, obesity & metabolism 2006;8;1;75-82

  • A functional variant of IRS1 is associated with type 1 diabetes in families from the US and UK.

    Morrison VA, Onengut-Gumuscu S and Concannon P

    Molecular Genetics Program, Benaroya Research Institute, Seattle, WA 98101, USA.

    A collection of 767 multiplex type 1 diabetes families from the US and UK were tested for linkage to the IRS1 gene and for allelic association with a specific variant of IRS1, G972R. Pedigree disequilibrium testing revealed preferential transmission of the 972R allele to affected offspring in these families (P = 0.02). Linkage analyses conditioning on status at IRS1 position 972 suggest the possibility of interaction with an unidentified locus on chromosome 8.

    Funded by: NIDDK NIH HHS: DK 46635

    Molecular genetics and metabolism 2004;81;4;291-4

  • Analysis of the type 2 diabetes-associated single nucleotide polymorphisms in the genes IRS1, KCNJ11, and PPARG2 in type 1 diabetes.

    Eftychi C, Howson JM, Barratt BJ, Vella A, Payne F, Smyth DJ, Twells RC, Walker NM, Rance HE, Tuomilehto-Wolf E, Tuomilehto J, Undlien DE, Rønningen KS, Guja C, Ionescu-Tîirgovişte C, Savage DA and Todd JA

    Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K.

    It has been proposed that type 1 and 2 diabetes might share common pathophysiological pathways and, to some extent, genetic background. However, to date there has been no convincing data to establish a molecular genetic link between them. We have genotyped three single nucleotide polymorphisms associated with type 2 diabetes in a large type 1 diabetic family collection of European descent: Gly972Arg in the insulin receptor substrate 1 (IRS1) gene, Glu23Lys in the potassium inwardly-rectifying channel gene (KCNJ11), and Pro12Ala in the peroxisome proliferative-activated receptor gamma2 gene (PPARG2). We were unable to confirm a recently published association of the IRS1 Gly972Arg variant with type 1 diabetes. Moreover, KCNJ11 Glu23Lys showed no association with type 1 diabetes (P > 0.05). However, the PPARG2 Pro12Ala variant showed evidence of association (RR 1.15, 95% CI 1.04-1.28, P = 0.008). Additional studies need to be conducted to confirm this result.

    Diabetes 2004;53;3;870-3

  • C-peptide, Na+,K(+)-ATPase, and diabetes.

    Vague P, Coste TC, Jannot MF, Raccah D and Tsimaratos M

    Departement de Nutrition-Endocrinologie-Maladies Métaboliques, CHU Timone, Marseille, France. philippe.vague@ap-hm.fr

    Na+,K(+)-ATPase is an ubiquitous membrane enzyme that allows the extrusion of three sodium ions from the cell and two potassium ions from the extracellular fluid. Its activity is decreased in many tissues of streptozotocin-induced diabetic animals. This impairment could be at least partly responsible for the development of diabetic complications. Na+,K(+)-ATPase activity is decreased in the red blood cell membranes of type 1 diabetic individuals, irrespective of the degree of diabetic control. It is less impaired or even normal in those of type 2 diabetic patients. The authors have shown that in the red blood cells of type 2 diabetic patients, Na+,K(+)-ATPase activity was strongly related to blood C-peptide levels in non-insulin-treated patients (in whom C-peptide concentration reflects that of insulin) as well as in insulin-treated patients. Furthermore, a gene-environment relationship has been observed. The alpha-1 isoform of the enzyme predominant in red blood cells and nerve tissue is encoded by the ATP1A1 gene. A polymorphism in the intron 1 of this gene is associated with lower enzyme activity in patients with C-peptide deficiency either with type 1 or type 2 diabetes, but not in normal individuals. There are several lines of evidence for a low C-peptide level being responsible for low Na+,K(+)-ATPase activity in the red blood cells. Short-term C-peptide infusion to type 1 diabetic patients restores normal Na+,K(+)-ATPase activity. Islet transplantation, which restores endogenous C-peptide secretion, enhances Na+,K(+)-ATPase activity proportionally to the rise in C-peptide. This C-peptide effect is not indirect. In fact, incubation of diabetic red blood cells with C-peptide at physiological concentration leads to an increase of Na+,K(+)-ATPase activity. In isolated proximal tubules of rats or in the medullary thick ascending limb of the kidney, C-peptide stimulates in a dose-dependent manner Na+,K(+)-ATPase activity. This impairment in Na+,K(+)-ATPase activity, mainly secondary to the lack of C-peptide, plays probably a role in the development of diabetic complications. Arguments have been developed showing that the diabetes-induced decrease in Na+,K(+)-ATPase activity compromises microvascular blood flow by two mechanisms: by affecting microvascular regulation and by decreasing red blood cell deformability, which leads to an increase in blood viscosity. C-peptide infusion restores red blood cell deformability and microvascular blood flow concomitantly with Na+,K(+)-ATPase activity. The defect in ATPase is strongly related to diabetic neuropathy. Patients with neuropathy have lower ATPase activity than those without. The diabetes-induced impairment in Na+,K(+)-ATPase activity is identical in red blood cells and neural tissue. Red blood cell ATPase activity is related to nerve conduction velocity in the peroneal and the tibial nerve of diabetic patients. C-peptide infusion to diabetic rats increases endoneural ATPase activity in rat. Because the defect in Na+,K(+)-ATPase activity is also probably involved in the development of diabetic nephropathy and cardiomyopathy, physiological C-peptide infusion could be beneficial for the prevention of diabetic complications.

    Experimental diabesity research 2004;5;1;37-50

Literature (5)

Pubmed - human_disease

  • Analysis of polymorphisms in 16 genes in type 1 diabetes that have been associated with other immune-mediated diseases.

    Smyth DJ, Howson JM, Payne F, Maier LM, Bailey R, Holland K, Lowe CE, Cooper JD, Hulme JS, Vella A, Dahlman I, Lam AC, Nutland S, Walker NM, Twells RC and Todd JA

    Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 2XY, UK. debbie.smyth@cimr.cam.ac.uk

    Background: The identification of the HLA class II, insulin (INS), CTLA-4 and PTPN22 genes as determinants of type 1 diabetes (T1D) susceptibility indicates that fine tuning of the immune system is centrally involved in disease development. Some genes have been shown to affect several immune-mediated diseases. Therefore, we tested the hypothesis that alleles of susceptibility genes previously associated with other immune-mediated diseases might perturb immune homeostasis, and hence also associate with predisposition to T1D.

    Methods: We resequenced and genotyped tag single nucleotide polymorphisms (SNPs) from two genes, CRP and FCER1B, and genotyped 27 disease-associated polymorphisms from thirteen gene regions, namely FCRL3, CFH, SLC9A3R1, PADI4, RUNX1, SPINK5, IL1RN, IL1RA, CARD15, IBD5-locus (including SLC22A4), LAG3, ADAM33 and NFKB1. These genes have been associated previously with susceptibility to a range of immune-mediated diseases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Graves' disease (GD), psoriasis, psoriatic arthritis (PA), atopy, asthma, Crohn disease and multiple sclerosis (MS). Our T1D collections are divided into three sample subsets, consisting of set 1 families (up to 754 families), set 2 families (up to 743 families), and a case-control collection (ranging from 1,500 to 4,400 cases and 1,500 to 4,600 controls). Each SNP was genotyped in one or more of these subsets. Our study typically had approximately 80% statistical power for a minor allele frequency (MAF) >5% and odds ratios (OR) of 1.5 with the type 1 error rate, alpha = 0.05.

    Results: We found no evidence of association with T1D at most of the loci studied 0.02 <P < 1.0. Only a SNP in ADAM33, rs2787094, was any evidence of association obtained, P = 0.0004 in set 1 families (relative risk (RR) = 0.78), but further support was not observed in the 4,326 cases and 4,610 controls, P = 0.57 (OR = 1.02).

    Conclusion: Polymorphisms in a variety of genes previously associated with immune-mediated disease susceptibility and/or having effects on gene function and the immune system, are unlikely to be affecting T1D susceptibility in a major way, even though some of the genes tested encode proteins of immune pathways that are believed to be central to the development of T1D. We cannot, however, rule out effect sizes smaller than OR 1.5.

    Funded by: Medical Research Council: G0000934; Wellcome Trust: 068545/Z/02

    BMC medical genetics 2006;7;20

  • IRS1, KCNJ11, PPARgamma2 and HNF-1alpha: do amino acid polymorphisms in these candidate genes support a shared aetiology between type 1 and type 2 diabetes?

    Johansen A, Jensen DP, Bergholdt R, Mortensen HB, Pociot F, Nerup J, Hansen T, Pedersen O and Danish Society of Childhood Diabetes

    Steno Diabetes Center and Hagedorn Research Institute, Gentofte, Copenhagen, Denmark. adjo@steno.dk

    Aims: Type 1 diabetes mellitus (T1DM) is a chronic disorder primarily triggered by environmental and immunological factors in genetically susceptible individuals. Despite the fact that there are indications of common aetiological features of T1DM and type 2 diabetes (T2DM), variation in genes involved in insulin secretion and insulin signalling has to a large extent been ignored as potential modifiers in the pathogenesis of T1DM. Recent studies suggest, however, that proven T2DM susceptibility gene variants may be involved in the pathogenesis of T1DM. The objective of this study was to estimate the impact of four selected amino acid polymorphisms -IRS-1 Gly972Arg, Kir6.2 Glu23Lys, HNF-1alpha Ala98Val and PPARgamma2 Pro12Ala in a Danish population of T1DM families.

    Methods: All variants were genotyped in 490 simplex- and multiplex-T1DM families applying polymerase chain reaction-restriction fragment length polymorphism, and results were evaluated by means of a transmission disequilibrium test (TDT) analysis.

    Results: TDT analysis revealed that the Arg972 IRS-1, the Lys23 Kir6.2 and the Val98 HNF-1alpha variants were transmitted from heterozygous parents to affected probands at frequencies of 49.1%, 47.0% and 54.1%, respectively (p > 0.05 for all). This was similar to the rate of transmission to unaffected siblings. The transmission rate of the Ala12 PPARgamma2 variant to affected probands was 46.5% (p > 0.05) which differed significantly from the transmission to unaffected offspring (p = 0.024). A combined analysis of the present and published pertinent data of 1691 transmissions showed a significantly decreased transmission of the PPARgamma2 Ala12 allele to affected probands (p = 0.0045).

    Conclusions: The Pro12Ala variant of PPARgamma2 is associated with T1DM, the minor Ala allele conferring a reduced risk. This same finding has been reported in patients with T2DM.

    Diabetes, obesity & metabolism 2006;8;1;75-82

  • A functional variant of IRS1 is associated with type 1 diabetes in families from the US and UK.

    Morrison VA, Onengut-Gumuscu S and Concannon P

    Molecular Genetics Program, Benaroya Research Institute, Seattle, WA 98101, USA.

    A collection of 767 multiplex type 1 diabetes families from the US and UK were tested for linkage to the IRS1 gene and for allelic association with a specific variant of IRS1, G972R. Pedigree disequilibrium testing revealed preferential transmission of the 972R allele to affected offspring in these families (P = 0.02). Linkage analyses conditioning on status at IRS1 position 972 suggest the possibility of interaction with an unidentified locus on chromosome 8.

    Funded by: NIDDK NIH HHS: DK 46635

    Molecular genetics and metabolism 2004;81;4;291-4

  • C-peptide, Na+,K(+)-ATPase, and diabetes.

    Vague P, Coste TC, Jannot MF, Raccah D and Tsimaratos M

    Departement de Nutrition-Endocrinologie-Maladies Métaboliques, CHU Timone, Marseille, France. philippe.vague@ap-hm.fr

    Na+,K(+)-ATPase is an ubiquitous membrane enzyme that allows the extrusion of three sodium ions from the cell and two potassium ions from the extracellular fluid. Its activity is decreased in many tissues of streptozotocin-induced diabetic animals. This impairment could be at least partly responsible for the development of diabetic complications. Na+,K(+)-ATPase activity is decreased in the red blood cell membranes of type 1 diabetic individuals, irrespective of the degree of diabetic control. It is less impaired or even normal in those of type 2 diabetic patients. The authors have shown that in the red blood cells of type 2 diabetic patients, Na+,K(+)-ATPase activity was strongly related to blood C-peptide levels in non-insulin-treated patients (in whom C-peptide concentration reflects that of insulin) as well as in insulin-treated patients. Furthermore, a gene-environment relationship has been observed. The alpha-1 isoform of the enzyme predominant in red blood cells and nerve tissue is encoded by the ATP1A1 gene. A polymorphism in the intron 1 of this gene is associated with lower enzyme activity in patients with C-peptide deficiency either with type 1 or type 2 diabetes, but not in normal individuals. There are several lines of evidence for a low C-peptide level being responsible for low Na+,K(+)-ATPase activity in the red blood cells. Short-term C-peptide infusion to type 1 diabetic patients restores normal Na+,K(+)-ATPase activity. Islet transplantation, which restores endogenous C-peptide secretion, enhances Na+,K(+)-ATPase activity proportionally to the rise in C-peptide. This C-peptide effect is not indirect. In fact, incubation of diabetic red blood cells with C-peptide at physiological concentration leads to an increase of Na+,K(+)-ATPase activity. In isolated proximal tubules of rats or in the medullary thick ascending limb of the kidney, C-peptide stimulates in a dose-dependent manner Na+,K(+)-ATPase activity. This impairment in Na+,K(+)-ATPase activity, mainly secondary to the lack of C-peptide, plays probably a role in the development of diabetic complications. Arguments have been developed showing that the diabetes-induced decrease in Na+,K(+)-ATPase activity compromises microvascular blood flow by two mechanisms: by affecting microvascular regulation and by decreasing red blood cell deformability, which leads to an increase in blood viscosity. C-peptide infusion restores red blood cell deformability and microvascular blood flow concomitantly with Na+,K(+)-ATPase activity. The defect in ATPase is strongly related to diabetic neuropathy. Patients with neuropathy have lower ATPase activity than those without. The diabetes-induced impairment in Na+,K(+)-ATPase activity is identical in red blood cells and neural tissue. Red blood cell ATPase activity is related to nerve conduction velocity in the peroneal and the tibial nerve of diabetic patients. C-peptide infusion to diabetic rats increases endoneural ATPase activity in rat. Because the defect in Na+,K(+)-ATPase activity is also probably involved in the development of diabetic nephropathy and cardiomyopathy, physiological C-peptide infusion could be beneficial for the prevention of diabetic complications.

    Experimental diabesity research 2004;5;1;37-50

Pubmed - other

  • Analysis of the type 2 diabetes-associated single nucleotide polymorphisms in the genes IRS1, KCNJ11, and PPARG2 in type 1 diabetes.

    Eftychi C, Howson JM, Barratt BJ, Vella A, Payne F, Smyth DJ, Twells RC, Walker NM, Rance HE, Tuomilehto-Wolf E, Tuomilehto J, Undlien DE, Rønningen KS, Guja C, Ionescu-Tîirgovişte C, Savage DA and Todd JA

    Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K.

    It has been proposed that type 1 and 2 diabetes might share common pathophysiological pathways and, to some extent, genetic background. However, to date there has been no convincing data to establish a molecular genetic link between them. We have genotyped three single nucleotide polymorphisms associated with type 2 diabetes in a large type 1 diabetic family collection of European descent: Gly972Arg in the insulin receptor substrate 1 (IRS1) gene, Glu23Lys in the potassium inwardly-rectifying channel gene (KCNJ11), and Pro12Ala in the peroxisome proliferative-activated receptor gamma2 gene (PPARG2). We were unable to confirm a recently published association of the IRS1 Gly972Arg variant with type 1 diabetes. Moreover, KCNJ11 Glu23Lys showed no association with type 1 diabetes (P > 0.05). However, the PPARG2 Pro12Ala variant showed evidence of association (RR 1.15, 95% CI 1.04-1.28, P = 0.008). Additional studies need to be conducted to confirm this result.

    Diabetes 2004;53;3;870-3

© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.